Striking gold with your XRootd

caching proxy
Alja & Matevz Tadel

Talk outline:
1. Motivation, context

2. What was there, the story of what we did

3. How the thing works

4. What we already know should be done next
amraktadel@ucsd.edu, mtadel@ucsd.edu

Motivation & context

e Caching proxy was part of the AAA proposal
— Planned for third year ... and we started early and are
finishing late
* AAA use-cases:

— reduce latency, serve cases where a remote file is read
multiple times (e.g. mixing, pileup, analysis)

— T3 user analysis
— now T2s seem even more promising

e Other VOs, esp. those with non-optimized 10
— makes a lot of sense for OSG
— one could use XrdPosix in client or XrdHttp on the proxy

A somewhat emotional interjection

e Caching proxy is a hard problem

— One tries to makes the best out of a (few) machines:
e saturate network interfaces,

» operate disks near read/write limits (simultaneously),
* make good use of buffers in RAM.

— And people throw vector reads spanning whole 4GB
files at you.

* Internet / hardware / kernel / XRootd ...
everything comes to bite you at some point.

— When we started, it was all of the above together ©

Striking gold?!?

e At this point you’ve probably realized the title
IS, to some extent, ironic

— effort was underestimated by a factor of 3;

— we’ve never dealt with net/disk at saturation levels;
— we were both new to XRootd internals;

— Alja had little experience with multi-threaded code.

 So..itwas fun ... and now there is hope, too!

Federated Storage, 4/11/14 A. & M. Tadel: Striking gold with your XRootd caching proxy 4

The original plan
What was already available
What’s gone wrong and what helped to get around it

BowoN e

What’s been done so far

THE STORY OF WHAT WE DID

Federated Storage, 4/11/14 A. & M. Tadel: Striking gold with your XRootd caching proxy

The plan & a high level scheme

Some Other Site

NRD RECIERRECTOR

3.2

3.1
Xrd Site Master
(not relevant) 3.3
Xrd Caching Proxy
—
= =
="][] —l
1o =
= Site Storage R " Disk Buffer

\ 4.2 Store to local disk buffer

4.1 Serve d\ata to
the original job
I

R
-
0.'
K
K
5

4.x And to any

other client
/
C<CCCCCCK /
< £ £ ¢ £ N
7
s
L e
—_—————— - 5. Move to Site Storage

T .-
"""""
. .
. .

.....

. .
............................

Federated Storage, 4/11/14 A. & M. Tadel: Striking gold with your XRootd caching proxy

The plan Il.

* Prefetching:

— The proxy can go ahead and download parts of
the file while client is processing its current hunk

— This is stored to disk (along with “direct” requests)

e Storage healing:

— |f data was supposed to be on the cluster, we can
inject it from the cache into local storage

— What if only part of the data is missing?

* Make proxy aware of segmentation, inject only missing
blocks = we have this 80% done for HDFS

What was already in XRootd

* Proxy service / cluster — libXrdPss.so

— Implemented as an oss plugin using XrdPosix interface
to forward requests to a proxy client.

— The main purpose was to provide access into and out
of private networks.
* |n memory cache and read-ahead supported.

— On the proxy level — specify block size and total cache
Size.

— On the client level.
See ofs documentation for details.

Connecting caching-proxy into XRootd

* XRootd allows to register a plugin that:
— Is instantiated as a Cache object

— This then gets called to instantiate a CachelO
object, one per open file.

— CachelO has to implement various Read calls

* Within this, one can implement all needed

functionality for prefetching, writing to local
disk, reading from it or from a remote source.

Basic design

Read request coming into CachelO are rounded to a block
size (64 kB — 8 MB).

— Data is returned to the client.

— Block is also written to local disk (via a write queue).

— Vector reads: serve what we have, pass through the rest

A prefetching thread is started for each open file:
— blocks are downloaded in order and also written to disk

— prefetching continues for as long as the file is open or the whole
file is downloaded.

If the block is already available, data is read from disk.
Basic cache purging is available (low/high water mark).

Problems along the road I.

Network interfaces on oldish boxes can not saturate 1 Gbps both
ways! Really.
— Use iperf to measure performance.
Disks/raids/lvms vary wildly in how they behave under heavy load.
— Use fio to simulate desired loads and see where / how things break.
Remote access is fun, too:
— routes, problems on the way
— remote cluster issues (which you can’t know much about)

All together, things can vary by orders of magnitude between a
good and a bad day:

Always do basic measurements when something looks strange. Trust me
on this ©

Problems along the road II.

* MLSensor helped us a lot to see what is going
on. All our plots are done with this.

* |ssues with XRootd — the proxy layer was
never subjected to the brutality we were
inflicting on it.

— We had to switch from XrdClient to XrdCl in the
XrdPosix layer.

— A couple of issues with locking — VTune captured
all of them rather well.

Basic tests

2. Testson an /O node for 100 Gbps networks
Healing HDFS storage with hdfs-xrootd-fallback and a block-based
proxy

HOW WELL DOES IT WORK?

Federated Storage, 4/11/14 A. & M. Tadel: Striking gold with your XRootd caching proxy

13

Standard test

Standard job:
— reads 2.5 MB every 10 seconds
— xrdfragcp —cms-job-sim -> sequential single reads

— Run a lot (several hundred) of those against a site or the
whole federation
* we pick LFNs from detailed monitoring

Then plot network / disk 1/0 rates

Running on a “standard”, 5 year old worker node:
— 48 GB RAM, 4x2TB disks in a LVM volume
— 2 x 1 Gbps (one on T2 network, the other on WAN)

All tests run with 4MB block size, | think

600 jobs reading from UNL
cache empty

* Prefetch starts strong ©
e Disk swallows
e After 10’ disk read starts
e write slows down
 RAM allocated for prefetch
gets used up
* prefetch slows down, too
e Equilibrium is reached within
minutes

At the end, the jobs were killed
forcefully, all at the same time

net out drops

write queue still needs to be
flushed

Federated Storage, 4/11/14 A. & M. Ta

Mbps

xrootd-proxy.t2.ucsd.edu

11004

1000 4

900 4

800 4

600 4

500 4

400 4

300 4

200 4

100 4

e

L P~ S E———

Net: In / Out

0 ,
11:55

1200

1205

12715 1220 12'25

Service Local Time

12710 12:30 12:35

5

12:40

MBps

xrootd-proxy.t2.ucsd.edu

1404

1304

120+

1104

100+

904

80+

70+

60+

50+

40+

304

20+

10+

"l

Disk: Read / Write

lm ‘\

0 g
11:55

12:00

12:05

12'15 1220 12:25 12:30 12:35

Service Local Time

12710

12:40

600 jobs reading from UNL
cache 1/3 populated

Read starts right away
Writes slower — disk overload
» prefetch also slower
Federated Storage, 4/11/14 A.& M. Ta

1150
1100
1050
1000
950
900
850
800
750
700
650
600
550
500
450
400
350
300
250
200
150
100

Mbps

xrootd-proxy.t2.ucsd.edu

50

w;—if‘m Il

“‘ ‘u, ‘7 -

! !
lj{ I

i

l HH in " i‘ H' 1 i y
| (k]
l =" l! | 1| lkll‘{ 'y ;* ‘I\ [

Net: In / Out

2L

15:25 15:30 15:35 15:40 15:45 15:50 15:55

Service Local Time

16:00

200
190
180
170
160
150
140
130
120
{110
£ 100
90
80
70
60
50
40
30
20
10

xrootd-proxy.t2.ucsd.edu

Disk: Read / Write

/ T
’*,

I Wwwww |

{

San

0
15:25 15:30 15:35

15:40 15:45 15:50 15:55
Service Local Time

16:00

xrootd-proxy.t2.ucsd.edu

1100
1050

600 jobs reading from UNL jpoies

900

no prefetching 850

800
750
700

* Only requested data gets 630
downloaded:

Mbps

550
500
450
400
350

e and written to disk 300

250

»

fr

* No disk reads 200 ¥
r
£
;

* served to the client

——

Net: In / Out |

150
100
50

1
|

- x a

93:45 13:50 13:55 14:00 14:05 14:10 14:15 14:20 14:25 14:30
Service Local Time

xrootd-proxy.t2.ucsd.edu

150

140 Disk: Read / Write

130

110

100

90

80 "

MBps

70
60 i i
50 % ?‘: "
40 ; f ; ; : : |
30 N
20 i i S

10 ’

\
'y \ 17L

Federated Storage, 4/11/14 A. & M. Ta 0 . -
13:50 13:55 14:00 14:05 14:10 14:15 14:20 14:25 14:30

Service Local Time

Federated Storage, 4/11/14

250 jobs reading from UNL

This is “50% of max load
Prefetch charges ahead at 2 x
speed
In 10’ all data is served from
disk

* which slows down writes

* and things balance out
around disk capabilities

Jobs which were gradually
added finish after an hour:
* Reads drop gradually and

write & prefetch pick up for
remaining jobs.

Mbps

1100 A

1000 -

900 4

800 -

700 4

600 1

500 4

400 {--}

300 -

200 4

100 A

xrootd-proxy.t2.ucsd.edu

'

‘ }I. ‘«] i ‘W{ M

i bl

——
- —

b iy Ik | '
il |I“‘I" 11l
1.

Net: in/ Out Sm— e it .* -

0 "
11:10 11:15 11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 12:00 12:05 12:1C

Service Local Time

A & M. Ta

190 -
180 -
170 -
160 -
150 -
140 1
130 -
120 -
110 -
& 100
= 9,
80 1
70
60 4

xrootd-proxy.t2.ucsd.edu

50 1

40 1
30 -

20+

10 1

-

[g

Disk: Read / Write i

11:10 11:15 11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 12:001§2:05 12:10

Service Local Time

PrismHEP — T. Hutton — 4/4/2014
Arista 7150-sw

meyer 5575)
e e i I
Arista 7504
Prism-Core-Sw

10G fiber
2 x10G

HEP-6509-sw

9 X 256GB
510MB/sec

Te9/9
10G copper
o= | —
® -~

8 X 3TB
125MB/sec

xrootd.t2.ucsd.edu phiphi.t2.ucsd.edu
106 I
Mongo \ 2 x 10GbE
| 108 TB disk, 64 GB RAM ... ~18 k$ | Data Appiiance, 3268

10G
1G

2 TB Cache
24TB Disk

Phil Papadopoulos

VDEV Assignment for ZFS

For each Vdev Balance
Traffic through both
connectors

* 36 Drives total in chassis

e 4 SAS-Lanes/Connector

* Drives are accessible from
connector. Only one path to
a drive is active

* ZFS vdev mapping: 36 port

¢ 36 port
* Alldrivesin asingle EpEnelss Q Q I Q Q Expapnder
vdev should be on
same SAS lane/
channel (9 drives/

channel) ~

o

* 4 vdevs total 9— drive z

. . - vdev for ZFS 7

* Multipath balancing — want i 5

- . Repeat for &' =

traffic evenly split across each colored Q l 8

both SAS connectors Expander group of Q Expander a)

) disks I Q 2

* Default multipath I a
setup is to use first l

connector as primary

Federated Storage, 4/11/14 A. & M. Tadel: Striking gold with your XRootd caching proxy 20

Phil Papadopoulos

Mongo performance

e Configure two zpools
— Each with two 9-drive RaidZ2 vdevs (18 drives total)
— Usable Storage in each pool is about 38 TB
— Write performance for large streaming writes about 1.8GB/s
— Read performance for large streaming reads about 1.6GB/sec

* Performance does NOT double when accessing both pools at
the same time
— Dual Read performance is about 2.8GB/sec (vs. 3.2GB/sec for doubling)
— Dual Write performance is about 2.8GB/sec (vs. 3.6GB/sec for doubling)
— Reason for fall-off is not understood.

This is also interesting for an “output buffer” machine!

mongo.t2.ucsd.edu
5000 4
4750 1
4500 4 R
42501 i Net: In / Out
. 40001 144
FNAL - mongo, 3000 jobs 75
)
3000+

* The machine was just setup f 7%
2 2500+
over the weekend — so this is 22532:
preliminary. 1
1250

* Yay, it works! 100y

7501
5001

 There was fear new things will -
crop up when going up x 4 ""09:04 0906 09:08 09:10 0912 0914 09:16 09:18 0920 0922 09:24 0926 09:28 09:30

. e Service Local Time
e Route to FNAL is still limited to
5Gbps —so we manage to eat

mongo.t2.ucsd.edu

550 1

this up. Disk: Read / Write

450 1 \ X

400 y ¥ -

* There’s clearly more *fun* -
ahead ...

MBps

2501 A 2 \
/

200+

150+ . '\/\
100 { ' /\/ \-\.,V

Federated Storage, 4/11/14 A.& M. Ta "09:04 0906 09:08 0910 0912 09'14 0916 0918 09:20 09:22 0924 0928 09:28
Service Local Time

HDFS-XRootd fallback

e Talk by Jeff Dost this Monday in CMS section of
0OSG AHM

* |n essence:

— capture HDFS missing block exceptions
— get the block via a local caching proxy

* special version, block-size aware (passed in as URL arg)
* prefetches and stores only the requested blocks

— each block stored in a separate file (for easy re-injection into HDFS)

* |ncreases redundancy

— also, can reduce replication for non-custodial data

Cache simulation based on IOV monitoring data

2. Modularization / simplification of the code:
a. Asyncreads

b. Address vector reads in a sensible manner

3. Options to make it really work in practice on near 100 Gbps network:
a. Using few fat I/O nodes
b. Using many standard nodes

WHAT WE ALREADY KNOW WE
SHOULD BE DOING NEXT

Federated Storage, 4/11/14 A. & M. Tadel: Striking gold with your XRootd caching proxy

24

Caching-proxy simulation

* Full timeline of read-requests from IOV = we can
simulate the operation of a caching-proxy:

— Same 190k AOD remote access data sample used
— Parameters: block-size, prefetching rate

— Questions:
e How much data was served from the cache?

* How much have we over-read the file?
This changes with job progress!

* How many trips to remote server have we saved?

 We just started playing with this:
— Vector-read pass-through is not simulated
— Extend to simulate a set of jobs
— Take into account access (for locally run jobs)

Caching-proxy simulation
Data served from cache

No prefetch:

* The larger the block size,
more we have in cache

With prefetch on this is even
more pronounced:

e jobsread at ~250 kB/s
 so thisis about x16
 +the block-size effect

Federated Storage, 4/11/14

dP /dN

10"

A. & M. Tadel: Striking gold with your XRootd caching proxy

—— BS 64kB
—— BS 256kB
BS 1MB

—— BS 8MB

T e e
. 0 s il
0 0.2 0.4 0.6 0.8 1
(PF=0) Saved bytes / requested

—— BS 64kB
—— BS 256kB 3
BS 1MB :
——— BS 8MB ;
it

1024

02

06

08

1

(PF=4MBps) Saved bytes / requested

Caching-proxy simulation
Data fetched / requested

Of course, we have to read
more than we need ...

About 1.5 times more, most
probable value

Obviously, cases where a
small part of file is read
generate the long tail.

Federated Storage, 4/11/14

—— BS 64kB
= 1 —— BS 256kB
3 BS 1MB
_ —— BS 8MB
% 1 0 1 | _’71
10°% \Q[””
I_‘_VD_‘j i :
10'3 .ILILN-/J\,I]L ‘ﬂﬂm,—ﬂlu”—'ﬂw-?ﬂ_, Loy qu_,‘—,_&,;,_an_ _L‘L/—._L_rr:u_wﬂ I _‘JJ k]'LLL_L-;—._-'-_
1 0-4
(08 .] s ot yly
i | i i 101, o
0 4 8 10 12 14 16 18 20
(PF=0) Done w/ prefetch / requested
—— BS 64kB
= 1 —— BS 256kB
3 BS 1MB
o —— BS 8MB
o

all
L A

-y
<
[

10

—
=
o

— —
= <
:ul'ﬂ] IIIIIIIT‘ T TTIT IIIIII"N|_|_|_|T|'|'|T_‘

S

©

8 10

12

14

16 18 20

(PF=4MBps) Done w/ prefetch / requested

A. & M. Tadel: Striking gold with your XRootd caching proxy

27

Caching-proxy simulation
Extra data / file size

This is extra data from read

requests only (no prefetch),

summed up throughout the

job.

e Part of this later get used
(in “served from cache”)

This means we read too
much in the beginning (of
course).

Federated Storage, 4/11/14

—— BS 64kB
5 1 = —— BS 256kB
3 : BS 1MB
_ —— BS 8MB
%1W§L {
s .
10-2 —\’:H":‘djh?ﬂ_{:i JL : I_iil_____!__: - J__LJ—_\ | L) ,_IJ
g LI_‘ Lu?g—**' L |_LI- I-I >
10.3 E_ET ey P A ‘,jli
T e I P H L‘
104 0
= L‘ i U‘I_‘
10°g . _ [|
E , . 1 . IR
0 0.2 0.4 0.6 0.8 1

(PF=0) Extra data / file-size

10-2 |

—
=
(o

-y
Q
-

10'55%
0

A. & M. Tadel: Striking gold with your XRootd caching proxy

—— BS 64kB
—— BS 256kB
BS 1MB
——— BS 8MB
1LL L g
.................... - . [U] _|ﬁ _‘
13 [JJ 1 - \JJLI \J]
= iq;_w) ‘ T r ‘
'-:'r:?‘l,__*,i‘ _L_ﬁ_' A ‘
T W
L _ﬂ 1 e o WO S 1 I _L
L ‘
U‘- |
0.2 0.4 0.6 08 I

(PF=4MBps) Extra data / file-size

28

Caching-proxy simulation
Overread vs. time

All over-read, including prefetch:

 at 20% progress we’ve read 7x the required data

e andthenendupatl.5

Federated !

0.9

0.8

0.7

0.6

0.5

o
a

o
w

o
no

ot
—

PF=4MBps, BS=2MB, Bytes transferred (with prefetch) / requested vs. job progress

h

C:’IIIIIIIIIIIIIIIIII TTT

I 14000

—12000

—10000

-8000

—6000

4000

29

Improve guts of the code

* Use asynchronous reads
— reduce number of threads, be more nimble for block juggling

 Think how to support vector reads better
— Now: serve what we have, forward the rest

— The problem:
* several hundred requests, each about 10 — 20 kB
e offsets 1 —10 MB, total extent up to 1 GB

— One could choose a smaller block-size —kill the disk!
— Or be more aggressive with prefetching — 100 Gbps networks!
— There is no silver bullet ... depends on needs / affordability

We have to find a way to support different strategies.

* Multi-source reading / switching during access
— Can happen behind the back of the actual client!

How to provision large installations?

e Caching-proxy cluster
1. few mongo like machines; or
2. interspersed in the cluster so that individual load is small
We started playing with this ...

* QOperate fraction of Tier-2 storage as a cache?

— Tempting, as there is no data-placement, it happens on-
demand, only data that is actually needed.

— Job-placement easier — we don’t have to know where data
is, only where it might have been.

— Still, it makes sense to orchestrate site-targets for data-sets.
* And here one might strike the gold vein ...

Conclusion

Le Caching-proxy v1 est arrivé!
— Available in xrootd-4.0.0

This is not the final code but:

— We came a long way, can saturate NICs and disks,
both ways. Oh, and use all your RAM ©

— All the pieces are on the table: testing setups,
analysis / simulation tools.

Who wants to try it out? Let’s talk ...
A possible solution for non-HEP VOs in OSG

